Applicative structure in vector space models

Márton Makrai，Dávid Nemeskey，András Korna
HAS Computer and Automation Research Institute

The problem
Mikolov［3］suggests
king - queen $=$ male - female
By commutativity
king - male $=$ queen - female $=$＇ruler，gender unspecified＇ But with function application

Victoria $=$ queen \oslash England and
Victor $=$ king \oslash Italy
If the function application operator \oslash is simply another vector to be added to the representation，the same logic would yield that Italy is the male counterpart of female England

Overview
We introduce a new 100 －dimensional embedding obtained by spectral clustering of a graph describing the conceptual struc ture of the lexicon．We use the embedding directly to investi－ gate sets of antonymic pairs，and indirectly to solve the prob lem outlined above by treating \varnothing and θ not as a vectors but as transformations．

Lexical decomposition
The standard model of lexical decomposition［2］divides lexical meaning in a systematic component，given by a tree of（gen－ erally binary）features，and an accidental component they call the distinguisher．

Antonymic pair lists

For a set of male and female words，such as〈king，queen＞，〈uncle，aunt＞，〈actor，actress〉，etc．，the dif ference between words in each pair should represent the idea of gender．Similarly for pairs differing in some other feature To test the hypothesis，we associated antonymic word pairs $\left\langle x_{i}, y_{i}\right.$ from WordNet 4 to 26 classes e．g．End／beginning GOOD／BAD，

GOOD		vertical	
safe	out	raise	level
peace	war	tall	short
pleasure	pain	rise	fall
ipe	green	north	south
efend	attack	shallow	eep
affirmative	negative	superficial	profou

Table 1：Word pairs associated to features GOOD and vertical

Test

For k pairs $\mathbf{x}_{i}, \mathbf{y}_{i}$ we are looking for a common vector \mathbf{a} such that

$$
\mathrm{x}_{\mathbf{i}}-\mathrm{y}_{i} \approx \mathbf{a}
$$

－Find $\operatorname{argmin}_{\mathbf{a}}$ Err

$$
E r r=\sum_{i}\left\|\mathbf{x}_{\mathbf{i}}-\mathbf{y}_{i}-\mathbf{a}\right\|^{2}
$$

－ $\operatorname{argmin}_{\mathbf{a}} E r r$ is actually the arithmetic mean of the vectors $\mathbf{x}_{\mathbf{i}}-\mathbf{y}_{i}$
Is the minimal Err any better than what we could expect from a bunch of random $\mathbf{x}_{\mathbf{i}}$ and \mathbf{y}_{i} ？
100 random pairings of the words to estimate the erro distribution，computing the minima of

$$
E r r_{\text {rand }}=\sum_{i}\left\|\mathbf{x}_{\mathbf{i}}^{\prime}-\mathbf{y}_{i}^{\prime}-\mathbf{a}\right\|^{2}
$$

－Is the error of the correct pairing，Err at least 2 or 3
standard deviations (σ) away from the mean of $E r r_{r a n d}$ ？
－features above the first line \rightarrow antonymic relations are wel captured by the embeddings
－features below the second line \rightarrow antonymic relations are not captured by the embeddings
－caused by size？
Embedding based on conceptual representation

－Input：a graph

nodes are concepts
$A \rightarrow B$ iff B is used in the definition of A
－base vectors are obtained by the spectral clustering method pioneered by［6］：
the incidence matrix of the conceptual network is replaced by a affinity matrix whose $i j$－th element is formed by computing the
－the first few（in our case，100）eigenvectors are used as a basis．
a word w_{i} in the basic vocabulary is included in the graph and corresponds to a base vector b_{i}
for other words w in the dictionary，we take the definition of any word w in the Longman Dictionary of Contemporary English，we form $V(w)$ as the sum of the b_{i} for the w_{i} s that appeared in the definition of w（with multiplicity）
－stopwords：the 19 most frequent words

Results with embeddings

	HLBL［5］original			HLBL scaled				SENNA［1］					4 llang			
pairs name	Err $\quad m$			Err					Err		σ		Er	m	σ	
32 many	40.565 .8	2.69	9.39		565.8	2.82	8.98				9.4	10.5	0.6	0.78	0.07	2.11
42 vertical	69.199 .1	3.43	8.74	69.1	198.9	3.58	8.34		1．38e＋	$2.94 \mathrm{e}+03$	122		0.808	1.69	0.203	4.34
156 good	254301	6.74	6.96	254	4302	6.19	7.79		6．47e＋03	$1.05 \mathrm{e}+04$	229	7.5	3.78	38	0.186	26
49 in	69.794 .9	4.27	5.92	69.7	794.5	4.35	5.7		1．71e＋03	3．55e＋03	128		1.13	1.63	0.137	3.68
48 same	93.8112	3.29	5.48	93.8	8113	3.11	6.04		2．11e＋03	$3.53 \mathrm{e}+03$	120	11.8	1.39	1.71	0.149	2.09
20 progress	21.528 .5	1.56	4.45	21.5	528.7	1.44			801	1．37e＋03	86.2	6.62	0.432	0.67	0.067	3.5
28 end	35.351 .8	3.75	4.41	35.3	352.8	3.67	4.79		798	$1.78 \mathrm{e}+03$	137	7.14	0.748	3.6	0.539	5.3
12	10.814 .6	0.978	3.9	10.8	4.8	1.09	3.67		461	70	72.	3.4	0.	0.15	0.049	． 319
18 mental	31.736 .2	1.31	3.45	31.7	736.3	1.14	4.08		830	$1.2 \mathrm{e}+03$	57.4	6.4	0.60	0.694	0.059	1.49
65 active	95.2112	5.19	3.32	95.2	2113	5.36	3.32		$2.51 \mathrm{e}+03$	4．07e＋03	196		1.75	1.95	0.142	1.45
36 time	59.270 .4	3.43	3.26	59.2	270	3.42	3.16		1．49e＋03	$2.36 \mathrm{e}+03$	113		0.845	1.46	0.175	35
32 sophis	65.674 .7	2.84	3.21	65.6	675.4	2.86	3.42		$1.26 \mathrm{e}+03$	$2.25 \mathrm{e}+03$	93.3		0.86	0.988	0.106	1.17
23 whole	39.345 .1	1.87	3.14	39.3	345.4	91	21		$1.06 \mathrm{e}+03$	$1.65 \mathrm{e}+03$	84.1	7.07	0.70	1.4	0.2	3.19
34 y	62.170 .8	3.45	2.52	62.1	7.6	84	22		4e＋03	2．29e＋03	122		0	0.703	0.13	2.89
12 front	11.916 .5	2.15	2.14	11.9	916.1	2.25	1.87		371	635	73.8	3.58	0.20	0.26	0.0539	1.1
8 single	7.8510 .4	1.31	1.94	7.85	7． 10.4	1.54	1.64		282	529	56.1	4.41	0.107	0.166	0.0516	1.15
14 primary	24.428 .1	2.15	1.74	24	28.4	1.99			713	1．01e＋03	85.3	3．47	0.54	0.505	0.0583	． 718
14 gender	15.318 .3	1.88	1.62	15.3	318.3	1.74	1.73		258	655	70.6		0.5	2.51	0.497	4.04
8 sound	11.612 .7	0.744	1.52	11.6	612.7	0.833	1.32		324				0.138	0.142	0.0397	0.112
16 know	25.127 .2	1.83	1.18	25.1	127.2	1.93	1.09		714	1．04e＋03	65.3		0.435	0.611	0.0766	2.29
10 angular	18.816 .3	2.19	1.14	18.8	816.3	2.03	1.22		371	457	49.9	1.73	0.15	0.16	0.028	0757
10 real	1313.9	1.09	0.808	13	314		0．844		442	612			0.223	0.286	0.0555	1.14
10 distance	1616.7	1.05	0.676	16	616.7	1.15	0.577		472	706	66.1	3.53	0.109	0.0799	0.0172	1.69
17 strong	21.222 .2	1.54	0.615	21.2	222.1	1.59	0.583		693		68.6	\％ 3.18	0.596	0.446	0.108	1.39
22 size	44.845 .3	5.88	0.08	44.8	4.9	5.45	0.211		1e＋03	1．36e＋03		2.74	0.27	0.314	0.0474	． 929

Table 2：Error of approximating real antonymic pairs（Err），mean and standard deviation (m, σ) of error with 100 random pairings，and the ratio $r=\frac{\mid \text { Err－m｜}}{\sigma}$ for different features and embeddings

HLBL and SENNA vs 4lang
Judgments under the three given embeddings and 4lang are highly correlated，see table 3．Unsurprisingly，the strongest correlation is between the original and the scaled HLBL results． Both the original and the scaled HLBL correlate notably better with 4lang than with SENNA，making the latter the odd one out．

Application

the dictionary－based embedding enables us to investigate the function application issue
－asymmetric expressions：john HAS dog，dog HAS john 4lang：a semantic representation in which predicates have at most two arguments
－two transformations T_{1} and T_{2} to regulate the linking of arguments
James kills James is agent $\quad V($ James $)+T_{1} V$（kill） kills James James is patient V（James）$+T_{2} V$（kill）
distinguish agent and patient relatives as in the man that killed James versus the man that James killed．

References

［1］R．Collobert，J．Weston，L．Bottou，M．Karlen，K．Kavukcuoglu，and P．Kuksa． Natural langlage processing（almost）from scratch．
ing Research（JMLR） 2011
［2］J．Katz and Jerry A．Fodor．
Language，39：170－210，1963．
［3］Tomas Mikolov，Wen－tau Yih，and Zweig Geoffrey
Linguistic regularities in contimuous spaceword representation
4］George A．Miller
Wordnet：a lexical database for english
（5）Andriy Mnih and Geoffrey E Hinton．
A scalable hierarchical distributed language model．
［6］Andrew Y．Ng，Michael I．Jordan，and Yair Weiss．
On spectral clustering：Analysis and an algorithn
In Advances in neurral information processing systems，pages 849 856．MIT Prees．
Acknowledgments
Work supported by OTKA grant \＃82333．

MTA SZTAK

